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A class of antagonistic linear differential games (DGs) in a fixed time interval with ellipsoidal payoff functional is considered. 
This class of DGs includes problems which assume both rigid constraints on the players' controls and requirements to minimize 
control expenses. Other known classes of differential games, such as linear DGs with a quadratic performance index and linear 
DGs with ellipsoidal terminal sets and admissible sets of controls for the players, considered in Kurzhansldi's ellipsoidal technique, 
are limiting cases of DGs of this class. The concept of a u-strategic function, which expresses the property of u-stability for ellipsoidal 
functions, is introduced. An effective algorithm is presented for computing a u-strategic function, based on Kurzhanskii's ellipsoidal 
technique. The main result of this paper is that a guaranteed positional strategy for player u is defined by a certain explicit formula 
in terms of a u-strategic function. The proof of this result is based on a viability theorem for differential equations. © 1998 Elsevier 
Science Ltd. All rights reserved. 

1. D I F F E R E N T I A L  G A M E S  W I T H  E L L I P S O I D A L  P A Y O F F  

Let PD n denote the class of positive definite symmetric n x n matrices, and let f2 n denote the following 
set of triples of a matrix and two numbers 

n"={(r,O,a)lKePD ~, 0>0, oeR} 

For any triple co = (K, O, or) e f'Z:, we define a function cp( .; co) of a vector variable x e 

I - o - e 4 1 - x r K - ' x ,  xTK-Ix <~ 1 
to(x;m) = 

L+**, x r  K- Ix  > 1 

is p a r t  o f  the  su r face  o f  an  e l l ipso id  in R n+l, and  for  tha t  r e a s o n  the  func t ions  ~p(-; co) a re  ca l l ed  e l l ipso ida l  
func t ions .  

W e  de f ine  the  c o n j u g a t e  to  a f u n c t i o n  f :  ~ -+  R tO { + ~ }  [1] as the  func t ion  

f*(v) = sup (~,rx- f(x)) 

Lemma 1.1. For any triple co = (K, 0, or) e f2 n, the function q~(.; co) is convex and semicontinuous 
from below and its conjugate has the form 

q~'f¥;m) = o+~]0  2 +¥rK¥ 

We define the classes of ellipsoidal functions ~I~ and the conjugate ellipsoidal functions ~ *  as follows: 

• " . ' "  

Consider the differential game (DG) 

i ( t )  = v ( t ) -  u(t), 

with payoff functional 

t e [To, rl (i. 1) 

T 
J = Ot(x(T))+ ~ (fJ(t,u(t))- y(t, u(t)))dt 

ro 
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where x(t) ~ R n is the phase vector of the system and u(t), t)(t) ~ B~" are the players' controls. 
We will call (~: ~n ~ R U {+oo} the terminal function and 13, ?:[To, T] × • U {+oo} the penalty 

functions. The aim of player u is to minimize the value of the functional J, while the aim of player v is 
to maximize it. 

It is well known that a D G  with linear dynamics 

:c(t) = A ( t ) x ( t ) -  B(t)u(t)+ C(t) v(t)  

may be reduced, by a suitable coordinate transformation, to the form of a game with dynamics (1.1). 
We shall say that the payoff functional (1.2) is ellipsoidal if the terminal and penalty functions are 

ellipsoidal functions of the phase vector 

ot,~(t, .), ~l(t,.) ~ ~ "  Vt  e [T 0, T] (1.3) 

This means that triples co~, cop(t), coy(t) e ftn exist such that 

a ( x )  = cp(x;c%), f3(t,u) = (p(u;mp(t)) 

¥(t,o) = m(o;(o~(t)), (o,, = ( K , , , % , % )  

Throughout this paper it will be assumed that the functions cop, cot: [To, T] ---) f :  are continuous. 
Let 6(.; M) denote the indicator function of a set M C 

&x;M) = {0,+**, Xx~M ~ M 

In the limiting case, when 0~ = Op(t) = O~(t) = O, % = op(t) = c~(t) = 0, the terminal and penalty 
functions are the indicator functions of certain ellipsoids M, P(t), Q(t) 

ct(x) = 8(x; M), ~(t, x) = ~(x; P(t)), ~l(t, x) = 8(x; Q(t)) 

In that case the D G  becomes a game with terminal set M and constraints on the controls 

u(t) e P(t), u(t) ~ Q(t) (1.4) 

In many applications, it is not only important for player u to reach the terminal ellipsoid Mbu t  in addition 
it is desirable to minimize the distance to its centre. These requirements may be formalized by considering 
the D G  (1.1), (1.2) with constraints (1.4) and terminal function a E (I)n: a(x) = q~x; (Ka, %, c~)), where 
Ka is the matrix of the terminal ellipsoid M = {x ~ ~ c r K ~ x  <~ 1} and % is a scaling coefficient. 

In practical problems, besides the given rigid constraints on the players' controls, it is often also 
necessary to minimize the costs of the controls. Let us assume that the set of admissible control vectors 
for each player at each instant of time is an ellipsoid. The costs for the player's control are minimal if 
the control vector coincides with the centre of the ellipsoid. These requirements may be formalized by 
introducing penalty functions 13(t,. ), ~,(t,. ) ~ (I:. 

The limit relations 

= lim q)(x;{OK-',O,-O)t= hm q ) ( x ; ( O K - , O , - O ) )  x T K X  O- ' ,+**  x x 11 e.-e+., , .  ~ . - .  

indicate that DGs with a quadratic performance index are a limiting case of differential games (1. I)-(1.3 ). 

2. T H E  S T R A T E G I C  F U N C T I O N  

It is known from differential game theory [2] that a guaranteed strategy for player u can be constructed 
using a u-stable function. In this paper, a u-stable function will be sought in the class of ellipsoidal 
functions (p(.; co), co e f : .  In that connection, instead of the concept of u-stability for a function 
~x;  co(t)), it will be more convenient to define a u-strategic function, as follows. 

Definition 2.1. A continuously differentiable function co: [To, T] ~ f2 n is said to be u-strategic in the 
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DG (1.1), (1.2) if co(T) = co~ and for all t e [To, 7], V e Rn, 

/)tp* (V;oa(t)) / ~t ~> ~t* (t, ~ )  - ~l*(t, ~ )  (2.1) 

where I~*(t, • ), ),(t, • ) are the conjugates of 13(t,- ), ~,(t,. ). 
Using approximations of the ellipsoids as proposed in [3, 4], we obtain an effective method of 

computing u-strategic functions. 

Lemrna 2.1. Let )~(t) be a real-valued function and let S(t) be a matrix-valued function, both continuous 
in the interval [To, 7], L(t) > O, S(t) being a non-singular n x n matrix. Let co(t) = (K(t), Off), off)) e 

be the continuously differentiable function defined by solving the following Cauchy problems 

a(t)  = o r ( t ) -  ol~(t), o ( r )  = o~ 

O(t)= O~(t) ~,(t)O(t) J 01~ (t), Of T)=Oa 
2~,(t)O(t) 2 

K(,)= + 
~.(t) 

gl (1')= (S T (I)K(t)S(I))~(ST(I)K~I(I)S(I)) ~2 , K(T) = l(,ix 

Then co(t) is a u-strategic function. 

3. A G U A R A N T E E D  C O N T R O L  T H E O R E M  

Let d o m f d e n o t e  the effective set of the function f: R n ~ • U {+oo} 

domf={xlf(x)<+** } 

Definition 3.1. A positional strategy for player u is a function u~(t,x) which is continuous in t, satisfies 
a Lipschitz condition in x and is such that Upos(t, x) e dom f~(t, .) for t e [To, 7], x e R n. 

Defim'tion 3.2. A function W: [To, 7] × ~,n ~ R U {+oo} is called a guaranteed result for a positional 
strategy u in the game (1.1), (1.2) if, for any (to, x0) e dora Wand any absolutely integrable function 
o: [To, 7] ~ R n, o(t) e dom 7(t," ) 

t0 

where x(t) is the solution of the equation x(t) = Upos(t, x(t)) - off) with initial condition X(to) = Xo. The 
strategy Upos thus defined is known as a guaranteed control for the result W(t, x). 

Let x e ~, co, col3 ~ f2n, co = (K, 0, or), cop = (K~, 0~, •p) be given. Define 

OKl~K-t x 
xrK- l x  ~ 1 

Uo(X, CO.o~l~) = K~ K-Ix (3.2) 

xrK- lx  ~ 1 

Guaranteed control theorem. Let the function co(t) be a u-strategy. Then the function 

uoos(t, x) = Uo(X, tO(O, tOi~(t)) (3.3) 

is a positional strategy for player u, and the function 

W(t, x) -- ~x ;  to(t)) (3.4) 

is a guaranteed result for that strategy. 
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Remark. An analogous construction yields a positional strategy and guaranteed result function for 
player v. 

4. L O W E R  D E R I V A T I V E  L E M M A  

Let II K II denote the maximum modulus of the eigenvalues of a matr ixK ~ ~n ×n. Let  co = (K, 0, ~) 
e ~¢'~" x ~ x ~. Put 

IlcoH'flxg+lOl+lol 
We define the distance between the elements o)1 and to2 of f P  as II o)1 - to~ )l. 

The following lemma may be derived from formula (3.2). 

(4.1) 

Lemma 4.1. For any compact sets f~, ~p C f~n, the function Uo(X, to, top) satisfies a Lipschitz condition 
on the set R n x f~ x f~p. 

Let ~g0 e ~, ~ e ~n, (~0, ~g) ~ (0, 0), co = (K, 0, g) e f l  n be given. We define 

K¥  (4.2) 
q( 0, v,,o)= 4¢v  + 

Given x e fl~', to -- (K, 0, o) e f~n we define 

Vo(X,tO)={O~[,l-xrK-lx, xrK-lx ~ 1 
, ¥(x, to)=OK-Ix 

xr K-I x > 1 

The following properties are immediate consequences of the definitions. 

Property 4.1. For any to ~ fP,  x e dora ~( .; to), the vector (4J(x, to), 4,0(x, co)) e R,+1 is an outward 
normal of the convex set epi q~( .; to) = {(~, ~.) e ~n+ll~p(x;to ) I> %} at the point (x, tp(x; to)) e epi q)(-; co). 

Property 4.2. For any co e f~,  410 e R, 4' e g ' ,  where (410, ~g) ;~ (0, 0), the vector q(~0, V, co) is the 
unique solution of the minimization problem 

min ( ¥ o ~ ( x ; ~ ) - ¥ r x l  
x e d o m  9( . ; to  ) 

Property 4.3. For any x e •n, to top e fP,  we have the equality Uo(X, to, toO) = q(Vo(X, to), W(x, of 3?3)to)'(to~)" 
It follows from Lemma 4.1, and also from Properties 4.2 and 4.3, that the function Upos(t , X) 

is a positional strategy in the sense of Definition 3.1. 
Using Properties 4.1-4.3 we can prove the following. 

Lemma 4.2. For any compact sets f~, O.~ C f~,  numbers 60 > 0, Cu ~ g~ exist such that, for any 6 
(0, 60), z e dom ~ .; co) + ~ dom ~p( .; top) 

m in - Su; co) + rxp u; % ) /  
ueRSx t 

is attained on a unique vector us, where 

Lemma 1.1 and formula (4.1) imply the following. 

Lemma 4.3. For any compact set f~ C f2 n, a number Ca exists such that, for any o)1, to2 e f~, 

J¢<v:,,,,>- c,,I,.o, I1<1 I i) ,-I- 

The following lemma is an immediate corollary of the definition of a conjugate function. 
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Lemma 4.4. 1. Suppose we are given the functions f x, f2:~ n ~ ~ U {+oo} and 

f ( x )  = inf ( f t ( x - z ) + f ~ ( z ) )  
Z~R n 

T h e n f * ( v )  = f]'(V) + f~(v)- 
2. Suppose we are given the functions f, g: ~n ~ R U {+oo}, and le t f*(¥)  < +ooV¥ ~ ~". Then 

+ 
ycdom f~ 

3. For any given function g: ~ -~ ~ U { + ~ }  and number ~5 > 0, we have (Sg)*(x) = 8g*(x/8). 
The following lemma is derived from Lemma 4.4. 

Lernma 4.5. Suppose we are given the convex semicontinuous from below functions go, g~, g2, g3: 
R n --, R and a number 8 > 0. Then 

(go +8(gt + g2 -g3))*(x) = sup,, inf inf (go(x +8(v - y - u ) ) +  
v ~domg 3 YcR n ucR "x  

+~(g; g~(Y) g; 

For any vector l e B~ n, we define the lower derivative [5] of a function W: [To, 7] x R" ~ R U {+oo} 
in the direction (1, l) at a point (t, x) ~ domW 

~(i t)W( t, x) = lira inf W(t + 8, x + ?as) - W(t, x) 
' s ~ l  8 

Lemma 4.6. Let  o~(t) be a u-strategic function, and let the functions upos(t, x), W(t, x) be defined by 
formulae (3.3) and (3.4). Let  (t, x) ~ dom IV, u ~ dom "/(t, -). Then 

~?~, oW(t, x) + ~(t, Upon(t, x)) - v(t, o) ~< 0, where 1 = t~ - Upos(t, x) 

Proof. Let W*(t, .). By Definition 2.1 and formula (3.4), for sufficiently small 6 > 0 

t+8 

I 

It follows from the continuity of col3(t ) and ~ov(t ) and from Lemma 4.3 that a function e~(8) ~ 0 (8 ~ +0) exists 
such that 

Apply Lemma 4.5 for the functions 

go(¥)=W (t+8,¥), g~(¥)=l~ (t,¥) 

g2(¥)-- el (8)[¥1, g3(¥) = ~" (t,¥) 

Thengl0,) = 0 for [y I ~< el(8),g~(y) = +~ for Jy I > e1(~5) and 

= (so  = 

= sup inf i n f ( W ( t + 8 , x + 8 ( u - y - u ) ) + 8 ~ ( t , u ) - ? ~ q ( t , u ) ) - ~ ( 8 )  
u cdomy(t,.) lYi~tt(  8)u~Rm 

We fix an arbitrary u e dom ),(t, .). 
Since W(t, x) < +oo, it follows that 

inf inf (W(t+8,x+8(v-y-u))+g~(t,u))<+** 
[yi,~l (a),eR" 

and, since the functions W(t + 8, .), ~(t, .) are convex and semicontinuous from below, the infima are attained on 
certain vectorsya and us. Apply Lemma 4.2 for co = o~(t + 8), o~13 = col3(t), z = x + 6(u -Ys). Then 
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Put u0 = Uo(X, a)(t), ol~(t)) = U~s(t,x). By Lemma 4.1 and the continuity of o(t), a function 82(8) ~ 0 (8 --) +0), 
independent of u, exasts such that 

1"6 -.o1~2(8) 
Since us, u0 ~ dom l~(t, .), it follows from the continuity of the function 13(t, .) in its effective set that a function 

83(8) -+ 0 (8 -+ +0) exists for which 

113(t,.8)- l)(t,~o)]~ ~3(8) 
Therefore 

W(t,x)~) W(t +8,x +8(u -Ys -us ))+8~(t,Uo)-~(t,u)-8(~l (8)+ e3(8)) 

Choose some sequence 8k ~ +0 and define lk = u - usk -Ysk- Then 

and this completes the proof of the lemma. 

5. P R O O F  O F  T H E  G U A R A N T E E D  C O N T R O L  T H E O R E M  

T h e  tangent  cone to the set M C R n at a point  z e M is defined as 

TM(Z)={ f ER#lliminfdist(z+Sf;M)=O}, s-)4o 8 

where  dist(x; M~ = infy~M l x - y I is the distance f rom the point  x to the set M. 
We shall need  the following theorem,  known as the viability theorem [6, 7]. 

(5.1) 

f(z)  • Tu(z) Vz • M (5.2) 

Then,  for  any z0 e M, a number  x 0 > 0 exists such that  a solution in the interval [0, x0] of  the equat ion 
£,(x) = f(z(x)) satisfying the initial condit ion z(0) = z0, and moreover  z(x) e M for  any x • [0, x0]. 

Lemma 5.1. Le t  the functions Upos(t, x) and W(t, x) be defined by formulae  (3.3) and (3.4). Suppose 
we are given a number  to E [To, T) and a vector  x0 e dom W(to, .). Then,  for  any cont inuous  funct ion 
t~: [to, T] ---) ~ such that  (t, t)(t)) < + ~  Vt ~ [to, T], and for any number  ta e [to, T) 

w(,,,x(,,))+ I w(,,,xo) 
to 

(5.3) 

wherex( t )  is a solution of  the differential equat ion J(t) = u(t) - Upo,(t,x(t)) satisfying the initial condit ion 
x(to)  = xo. 

Proof. Fix arbitrary functions u(t) andx(t), satisfying the assumptions of the lemma. Let t~ ax denote the maximum 
number t~ e [to, T] such that inequality (5.3) holds for any fl e[t0, t~]. Since W(t,x) is semicontinuous from below, 
the maximum exists. Suppose that t[ nax < T, Define the set 

M = {z = (t,x,y~It etto,rl,x e R",y e n,w(t,x)+ y ~ W(to,Xo)} 

and a function f'. [to, T] x ~ x R --) • x R" x R 

f(t,x,y)=(T-t,(T-t)(v(t)-Upos(t,x)), (T-t)(~(t,l~(t,x))- y(t,u(t)))) 

Viability theorem. Let  M C R n be a closed set and let f: M ---) R m be a cont inuous function. Assume 
that  
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We will show that condition (5.2) holds. 
Letz  = (t,x,y) ~ M. I f t  = T, thenf(z) = 0 e TM(z). Consider the case t < T. 

P u t  g = 15(t, U~os(t, x)) .- y(t, t)(t)). By Lemma 4.6, sequences of numbers ~5~ --+ +0 and vectors l~ --+ l = 
off) - Upos(t, x) ernst sucla tlaat 

lira inf W(t + 5~,x + 5~ll~ ) -  W(t.x) ~ g <~ 0 

Define 

A t = 8  k / ( T - t ) ,  t k=t+8,~, x k=x+~kl  k 

Yk=y+min{W(t ,x)-W(tlc,xi) ,5ig},  Zi=(tk,xlc,yi) 

Then W(t~, x~) + yt <~ W(t, x) + y <<- W(to, xo). Consequently, for sufficiently large k such that t + ~5~ < T, we 
have z~ ~ M. By definition (5.1), the truth of condition (5.2) now follows from the relationships 

lira inflz + A~ f ( z ) - z i l / A i  ~ <~iminf((T-t)ll-t~l+l~g-min{W(t,x)- w(t~.x~),~i~g}~a~ )= 
k---~oo k---~ ~ ', ; 

=(T-t)liminf(max['i(Wk~**, t" (tk,x k W(t,x))/8i + g,0})=0 

Define the functions 

to 

Note that fix) = T -  t(z) and the function f(z) satisfies a Lipschitz condition. Hence it follows that z(z) = (t(z), 
x(t(~)), y(t(x))) is the unique solution of the equation k(z) = f(z(z)), satisfying the initial condition z(0) = (t~ n~x, 
x(t~ax), y ( t ~  x)). By the viability theorem, % > 0: z(z) e M exists for t e [0, %], that is, inequality (5.3) is true for 
any tl e [t~ ~x, t(%)], contrary to the definition of t~ ax. This contradiction shows that the assumption t/nax < T cannot 
hold; consequently, t~ nax = T, which completes the proof of the lemma. 

To comple te  the p roo f  of  the guaranteed  control  theorem,  it will suffice to show that L e m m a  5.1 
remains  valid if the continuity condit ion for t)(t) is replaced by the requi rement  that the same function 
be absolutely integrable.  

Given points %, zl, To ~< z0 < zl ~< T and a vector  v e ff~n, we define 

,j 
~/(~,Xo, Xj)= i n f J  ¥(t, o(t))dt 

u (.) Xo 
(5.4) 

where  the infimum is evaluated over all absolutely integrable functions v: [z0, zl] ~ E" such 
that  

"[(t, o(t))< +,. Vt~[Xo, Xl], ~] u(t)dt=~ 
% 

It is easy to see that the function y ( . ,  %, zl) is convex. Applying the separation theorem to its epigraph, 
we obtain the following. 

L e m m a  5.2. Suppose we are given the points z0, zl, To ~< ~0 < T1 ~ T and a vector  ~30 ~ •n such that  
~(v0, c0, Zl) < +oo. Then  a number  ~0 ~> 0 and a vector  V e R' ,  (V0, V) ~ (0, 0) exists, such that, for  
any t~ e y ( . ,  Co, zl), 

L e m m a  5.3. Le t  T o ~< zo < xl ~< T and let vt(t)  be a given function, absolutely integrable over  the 
interval [z0, Ca], such that  ?(t, o1(0)  < +oo for t E [%, cl]. Then  a cont inuous function u2: ['c0, cl] --+ R n 
exists such that  
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~ v2(t)dt= ~ u;(t)dt, xl Y(t'u2(t))dt<" ~ Y(t'ui(t))dt (5.5) 
% % "¢o "co 

Proof. Define 

Do= ~ ul(t)dt (5.6) 
"CO 

Since r(t, u(t)) <~ C < +oo, it follows that ~t(u0, x0, ~1) < +oo and, by Lemma 5.2, a vector (u/0, ~/) e R × g~\(0, 0) 
exists such that 

~O~(~O,XO,¢l)- ~rb 0 = inf (Wo~(D,x0,xl)- W/'D )= 
~dom~(,,~O,Xt) 

(5.7) 

It has been shown (see, e.g. [8]) that the infimum in (5.4) is attained. Let t)0(t ) denote the absolutely integrable 
function for which the minimum is attained in (5.4), and such that 

~] u(t)dt=Do, ~(t, u(t))<+** 
to 

We put o2(t) = q(~/o, ¥, cot(t)), where the function q(u/o, Wo, co) is defined by (4.2). If Oo(t) ~ t>2(t) on a set of 
non-zero measure, the, by Property 4.2 

¥o~t, u2 (t))- yru2(t) < ¥o~t, Uo(t))- yrvo(t) 

on that set. Then 

~0 ~0 

which contradicts (5.7). Consequently, o0(t) = o2(t) almost everywhere. Taking (5.6) into account, as well as the 
definition of o0(t), we obtain (5.5). 

L e m m a  5.4. Let to ~ [To, 7] and let u: [to, T] ~ R n be a given absolutely integrable function such that 
y(t, u(t)) < +oo. Then a sequence of piecewise-continuous functions Ok: [to, T] ~ R n exists such that 

T T 

f y(t, Ok(t))dt<~ ~ ~t, v(t))dt (5.8) 
to to 

and the solutions x(t) and Xk(t) of the equations x(t) = o(t) - Upos(t, x(t)), YCk(t) = o(t) - Upos(t, xk(t) ), 
with initial data X(to) = Xk(tO) = Xo, are such that 

max x k(t) x(t) I ~ k ~ * *  (5.9) '~tto'r] [ - 0 as 

Proof. Partition the interval [to, T] into k equal subintervals by the points ti = to + i(T - to)/k. 
By Lemma 5.3 ,applied to the interval [x0, xl] = [ti, ti+l], a continuous function Ok: [ti, ti+d ~ ~ exists 

such that 

k( t)dt I u(t)dt, ~(t, uk(t))dt<~ ~(t,v(t))dt 
ti ti ti ti 

Applying Lemma 5.3 to all the intervals [ti, ti+l] (i = 0 . . . . .  k - l ) ,  we obtain a function ok(t), defined 
in [to, T], which satisfies inequality (5.8). 

Let  x(t) and xk(t) be as defined in the assumptions of the lemma. Using the fact that Upos(t, x) satisfies 
a Lipschitz condition with respect to x, we can readily prove (5.9). 
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Completion of the proof of the guaranteed control theorem. 
We fix a point  to a [To, 7], a vector xo e dora W(t0, .) and an absolutely integrable function 

t): [to, 7] ~ g~ such that V(t, o(t)) < +oo for all t e [to, 7]. 

Applying Lemma 5.4, we obtain a sequence of piecewise-continuous functions t~k: [to, 7] ~ R n for 
which relationships (5.8) and (5.9) hold. 

For each k = 1, 2 , . . . ,  applying Lemma 5.1 in each subinterval [t/, ti+l] in which ok(t) is continuous, 
we obtain the inequalities 

ti 

which, taking into account the condition W(T, x) = or(x) (see (3.4)), gives 

to 

Hence, by (5.8) and (5.9), the semicontinuity of tx from below and the uniform continuity of the 
function f~(t, Upos(t,. )), we obtain inequality (3.1). 
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